92 Cansu Iraz Seyrek Ćık
[9]
Hosseini S.M., Mohammadi M., Rosemann A., Schröder T., Lichten -
berg J., A morphological approach for kinetic façade design pro-
cess to improve visual and thermal comfort. Review, âBuilding
and Environmentâ 2019, Vol. 153, 186â204, doi: 10.1016/j.build-
env.2019.02.040.
[10] Andrews L., Rottle N., Deploying living walls as kinetic façades,
âJournal of Living Architectureâ 2017, Vol. 4, No. 2, 17â31, doi:
10.46534/jliv.2017.04.02.017.
[11] Nowysz A., Urban vertical farm â introduction to the subject
and discussion of selected examples, âActa Scientiarum Polono-
rum Architecturaâ 2021, Vol. 20, Iss. 4, 93â100, doi: 10.22630/
aspa.2021.20.4.38.
[12]
Sanchez M.M., Kinetic Green Wall System Applications on Reducing
Carbon Emissions in Hot-Arid Climates, MA thesis, University of Ari-
zona, 2017, http://hdl.handle.net/10150/626722 [accessed: 25.11.2023].
[13]
Globa A., Costin G. Tokede O., Wang R., Khoo C.K., Moloney J., Hy-
brid kinetic façade: fabrication and feasibility evaluation of full-
scale prototypes, âArchitectural Engineering and Design Manage-
mentâ 2021, Vol. 18, Iss. 6, 1â21, doi: 10.1080/17452007.2021.1941739.
[14] Zheng X., Dai T., Tang M., An experimental study of vertical
greenery systems for window shading for energy saving in sum-
mer, âJournal of Cleaner Productionâ 2020, Vol. 259, 120708, doi:
10.1016/j.jclepro.2020.120708.
[15] Seyrek Ćık C.I., WoĆșniczka A., Widera B., A conceptual framework
forîtheîdesignîofîenergy-eî§œcientîverticalîgreenîfaçades, âEnergiesâ
2022, 15(21), 8069, doi: 10.3390/en15218069.
[16] Seyrek C.I., Widera B., WoĆșniczka A., Sustainability-related pa-
rameters and decision support tools for kinetic green façades,
âSustainabilityâ 2021, 13(18), 10313, doi: 10.3390/su131810313.
[17] Manso M., Castro-Gomes J., Green wall systems: a review of their
characteristics, âRenewable and Sustainable Energy Reviewsâ
2015, Vol. 41, 863â871, doi: 10.1016/j.rser.2014.07.203.
[18] Perini K., Ottelé M., Haas E., Raiteri R., Vertical greening systems,
a process tree for green façades and living walls, âUrban Ecosys-
temsâ 2013, Vol. 16, 265â277, doi: 10.1007/s11252-012-0262-3.
[19] Yan F., Shen J., Zhang W., Ye L., Lin X., A review of the applica-
tionîofîgreenîwallsîinîtheîacousticîîżeld, âBuilding Acousticsâ 2022,
Vol. 29, Iss. 2, 295â313, doi: 10.1177/1351010X221096789.
[20] Schinkel U., Becker N., Trapp M., Speck M., Assessing the Con-
tribution of Innovative Technologies to Sustainable Development
for Planning and Decision-Making Processes: A Set of Indicators
to Describe the Performance of Sustainable Urban Infrastructures
(ISI), âSustainabilityâ 2022, 14(4), 1966, doi: 10.3390/su14041966.
[21]
Meng X., Yan L., Liu F., A new method to improve indoor environment:
Combining the living wall with air-conditioning, âBuilding and Envi-
ronmentâ 2022, Vol. 216, 108981, doi: 10.1016/j.buildenv.2022.108981.
[22]
Davis M.J.M., Ramirez F., Pérez M.E., More than just a Green Façade:
Vertical Gardens as Active Air Conditioning Units, âProcedia Engineer-
ingâ 2016, Vol. 145, 1250â1257, doi: 10.1016/j.proeng.2016.04.161.
[23] Li X., Zhou J., Tang Y. et al., A hydroponic vertical greening system
for disposal and utilization of pre-treated Blackwater: Optimiza-
tion of the operating conditions, âEcological Engineeringâ 2022,
Vol. 183, 106739, doi: 10.1016/j.ecoleng.2022.106739.
[24]
Irga P.J., Torpy F.R., Griî”¶n D., Wilkinson S.J., Vertical Greening
Systems: A Perspective on Existing Technologies and New Design
Recommendation, âSustainabilityâ 2023, 15(7), 6014, doi: 10.3390/
su15076014.
[25] CortĂȘs A., Tadeu A., Santos M.I., de Brito J., Almeida J., Innova-
tive module of expanded cork agglomerate for green vertical sys-
tems, âBuilding and Environmentâ 2021, Vol. 188, 107461, doi:
10.1016/j.buildenv.2020.107461.
[26] Riley B., de Larrard F., Malécot V., Dubois-Brugger I., Lequay
H., Lecomte G., Living concrete: Democratizing living walls,
â Science of The Total Environmentâ 2019, Vol. 673, 281â295, doi:
10.1016/j.scitotenv.2019.04.065.
[27] Bae J.Y., Park D., Weeping Brick: The Modular Living Wall System
Using 3D Printed Porous Ceramic Materials, [in:] J.H. Lee (ed.),
Computer-Aided Architectural Design, âHello, Cultureâ, Daejeon
2019, Republic of Korea, June 26â28, 2019, Selected Papers, Spring-
er, Singapore 2019, 399â409, doi: 10.1007/978-981-13-8410-3_28.
[28] Perez Urrestarazu L., Egea G., Franco-Salas A., Fernandez-Cane-
ro R., Irrigation Systems Evaluation for Living Walls, âJournal of
Irrigation and Drainage Engineeringâ 2014, 140(4), 04013024-1/11,
doi: 10.1061/(ASCE)IR.1943-4774.0000702.
[29] Riley B., The state of the art of living walls: Lessons learned,
âBuilding and Environmentâ 2017, Vol. 114, 219â232, doi: 10.1016/
j.buildenv.2016.12.016.
[30] Xie L., Shu X., Kotze D.J., KuoppamÀki K., Timonen S., LehvÀ-
virta S., Plant growth-promoting microbes improve stormwater
retention of a newly-built vertical greenery system, âJournal of En-
vironmental Managementâ 2022, Vol. 323, 116274, doi: 10.1016/
j.jenvman.2022.116274.
[31] Alsaad H., Hartmann M., Voelker C., Theî eî§Œectî ofî aî livingî wallî
system designated for greywater treatment on the hygrothermal
performance of the façade, âEnergy and Buildingsâ 2022, Vol. 255,
111711, doi: 10.1016/j.enbuild.2021.111711.
[32] Charoenkit S., Yiemwattana S., The performance of outdoor plants
in living walls under hot and humid conditions, âLandscape and
Ecological Engineeringâ 2021, Vol. 17, 55â73, doi: 10.1007/
s11355-020-00433-8.
[33] Bustami R.A., Beecham S., Hopeward J., Theî inîuenceî ofî plantî
type, substrate and irrigation regime on living wall performance in
a semi-arid climate, âEnvironmentsâ 2023, 10(2), 26, doi: 10.3390/
environments10020026.
[34] Decker M., Zarzycki A., Designing resilient buildings with emergent
materials, [in:] E.M. Thompson (ed.), Fusion â Proceedings of the
32
nd
International Conference on Education and research in Com-
puter aided Architectural Design in Europe, Newcastle upon Tyne,
England, UK, 10-12 September 2014, Vol. 2, Northumbria Univer-
sity, Newcastle 2014, 179â184, doi: 10.13140/2.1.1060.8967.
[35] Capeluto G., Ochoa C., Intelligent envelopes for high perfor-
mance buildings: Design and strategy, Springer, Cham 2017, doi:
10.1007/978-3-319-39255-4.
[36] Fox M., Interactive Architecture: Adaptive World, Princeton Archi-
tectural Press, New York 2016.
[37] Grobman J., Yekutiel T., Autonomous movement of kinetic clad-
ding components in building façades, [in:] A. Chakrabarti, R. Pra -
kash (eds.), ICoRDâ13. Lecture Notes in Mechanical Engineering,
Springer, Chennai 2013, doi: 10.1007/978-81-322-1050-4_84.
[38]
Aelenei L., Aelenei D., Romano R., Mazzucchelli E.S., Brzezicki M.,
Rico-Martinez J.M., Case Studies: Adaptive Façade Network, TU
Delft Open 2018.
[39] Tabasi S.F., Banihashemi S., Design and mechanism of building re-
sponsive skins: State-of-the-art and systematic analysis, âFrontiers
of Architectural Researchâ 2022, Vol. 11, Iss. 6, 1151â1176, doi:
10.1016/j.foar.2022.05.006.
[40] Lienhard J., Schleicher S., Poppinga S. et al., Flectoîżn:îaîhingeîlessî
îappingîmechanismî inspiredîbyînature, âBioinspiration and Bio-
mimeticsâ 2011, Vol. 6, No. 4, 045001, doi: 10.1088/1748-3182/6/
4/045001.
[41]
Gonzalez E.A., Moser S., Körner A. et al., Advancing solar control and
energy harvesting through the use of pneumatically actuated elastic
adaptiveîfaÒ«ades, [in:] D.A. Saravanos, A. Benjeddou, N. Chrysochoi-
dis, T. Theodosiou (eds.), X ECCOMAS
Thematic Con ference on Smart
Structures and Materials SMART 2023, 3â5 July 2023,
Patras, Greece,
Eccomas Proceedia, 744â756, doi: 10.7712/150123.9828.444680.
[42]
Nagy Z., Svetozarevic B., Jayathissa P. et al., The adaptive solar fa-
çade: From concept to prototypes, âFrontiers of Architectural Re-
searchâ 2016, Vol. 5, Iss. 2, 143â156, doi: 10.1016/j.foar.2016.03.002
[43]
Correa D., Krieg O.D., Menges A., Reichert S., Rinderspacher K.,
HygroSkin: A climate-responsive prototype project based on the elas-
tic and hygroscopic properties of wood, [in:] ACADIA 2013 Adap-
tive Architecture: Proceedings of the 33
rd
Annual Conference of the
Association for Computer Aided Design in Architecture, October
21â27, 2013, Cambridge, Ontario, 33â42, doi: 10.52842/conf.aca-
dia.2013.02.
[44] Bedon C., Honîż D., MachalickĂĄ K.V. et al., Structural character-
isation of adaptive façades in Europe â Part II: Validity of con-
ventional experimental testing methods and key issues, âJournal
of Building Engineeringâ 2019, Vol. 25, 100797, doi: 10.1016/
j.jobe.2019.100797.
[45] Holstov A., Farmer G., Bridgens B., Sustainable materialisation
of responsive architecture, âSustainabilityâ 2017, 9(3), 435, doi:
10.3390/su9030435.